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THREE MAIN TYPES OF 
MACHINE LEARNING

• SUPERVISED LEARNING

• UNSUPERVISED LEARNING

• REINFORCEMENT LEARNING



SUPERVISED LEARNING

Cityscapes Dataset: Example Zurich
https://www.cityscapes-dataset.com/examples/



Learn a clustering model

UNSUPERVISED LEARNING



State - Action 

REINFORCEMENT LEARNING
Reward

Dab

chill

Dog - Agent

Cookie

Penalty

Lay down Mean cat



LINEAR REGRESSION

X = [x₁, x₂, ..., xₙ], 
y = [y₁, y₂, ..., yₙ],
A linear regression model with m features is
ŷᵢ = β₀ + β₁x₁ᵢ + β₂x₂ᵢ + ... + βₘxₘᵢ 
Loss - Mean Squared Error : 
MSE = (1/n) * Σ(ŷᵢ - yᵢ)², where i = 1 to n
Optimizer: Gradient Descent
βⱼ := βⱼ - α * ∂MSE/∂βⱼ, where j = 0 to m



OPTIMIZATION

Optimizer: Gradient Descent
βⱼ := βⱼ - α * ∂MSE/∂βⱼ, where j = 0 to m, α is the learning rate,
Partial Derivatives: 
∂MSE/∂β₀ = (2/n) * Σ(ŷᵢ - yᵢ), where i = 1 to n ∂MSE/∂βⱼ = (2/n) * Σ(ŷᵢ - yᵢ) * xⱼᵢ, 
where i = 1 to n and j = 1 to m
Update Equations: 
β₀ := β₀ - α * (2/n) * Σ(ŷᵢ - yᵢ) 
βⱼ := βⱼ - α * (2/n) * Σ(ŷᵢ - yᵢ) * xⱼᵢ, where j = 1 to m
Once the coefficients are learned, the trained linear regression model can 
be used to make predictions on new, unseen data  
(ŷ = β₀ + β₁x₁ + β₂x₂ + ... + βₘxₘ).



AN EXAMPLE

• HOUSE 
• HORCE 



MATRIX ( IS AMAZING)
X = [x₁, x₂, ..., xₙ]ᵀ
y = [y₁, y₂, ..., yₙ]ᵀ
ŷ = Xβ 
MSE = (1/n) * (y - ŷ)ᵀ(y - ŷ) 
y is the vector of actual target values, of shape (n, 1).
ŷ is the vector of predicted values, of shape (n, 1).

Gradient Descent: β := β - α * ∇MSE 
α is the learning rate, which determines the step size of the updates.
∇MSE is the gradient of the MSE with respect to the coefficients β.
∇MSE = (2/n) * Xᵀ(Xβ - y)    feature matrix X of shape (m+1, n).
β := β - α * (2/n) * Xᵀ(Xβ - y)



NEURAL NETWORKS
INPUT LAYER 
HIDDEN LAYERS 
OUTPUT LAYER



NEURAL NETWORKS
Input features: x₁, x₂, x₃, x₄, x₅
Hidden layers: h₁, h₂, h₃
Output values: y₁, y₂
Weights and biases:
• W₁: weight matrix connecting the input layer to the first hidden layer, of 

shape (5, 7)
• b₁: bias vector for the first hidden layer, of shape (7, 1)
• W₂:  (7, 7)
• b₂: (7, 1)
• W₃: (7, 7)
• b₃:  (7, 1)
• W₄: (7, 3)
• b₄:  (3, 1)



FORWARD PROPAGATION
Input layer to the first hidden layer: z₁ = W₁ · x + b₁ h₁ = a(z₁)
First hidden layer to the second hidden layer: z₂ = W₂ · h₁ + b₂ h₂ = a(z₂)
Second hidden layer to the third hidden layer: z₃ = W₃ · h₂ + b₃ h₃ = a(z₃)
Third hidden layer to the output layer: z₄ = W₄ · h₃ + b₄ y = a(z₄)

Activation function: a
A differentiable nonlinear activation function is used in the hidden layers of a neural network. This allows the 
model to learn more complex functions than a network trained using a linear activation function.
• Sigmoid: f(z) = 1 / (1 + exp(-z)), f'(z) = f(z) * (1 - f(z))
• Hyperbolic Tangent (tanh): f(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)), f'(z) = 1 - f(z)^2
• Rectified Linear Unit (ReLU): f(z) = max(0, z), f'(z) = 1 if z > 0 else 0
• Leaky ReLU: f(z) = max(αz, z), where α is a small positive constant, f'(z) = 1 if z > 0 else α
• Softmax (for output layer in multi-class classification): f(z)ᵢ = exp(zᵢ) / ∑ⱼ exp(zⱼ), f'(z)ᵢ = f(z)ᵢ * (1 - f(z)ᵢ)



LOSS
y_true: the true output values, of shape (3, 1)

L: the loss function, which measures the difference between 
the predicted output (y) and the true output (y_true)

Loss Functions:
Mean Squared Error (MSE) for regression problems: L = (1/2) · Σ(y - y_true)²
Binary Cross-Entropy for binary classification problems: 
L = -[y_true · log(y) + (1 - y_true) · log(1 - y)]
Categorical Cross-Entropy for multi-class classification problems: L = -Σ(y_true · log(y))



BACKWARD PROPAGATION
Output layer: δ₄ = ∂L/∂y ⊙ a'(z₄) ∂L/∂W₄ = δ₄ · h₃ᵀ ∂L/∂b₄ = δ₄
h3: δ₃ = (W₄ᵀ · δ₄) ⊙ a'(z₃) ∂L/∂W₃ = δ₃ · h₂ᵀ ∂L/∂b₃ = δ₃
h2: δ₂ = (W₃ᵀ · δ₃) ⊙ a'(z₂) ∂L/∂W₂ = δ₂ · h₁ᵀ ∂L/∂b₂ = δ₂
h1: δ₁ = (W₂ᵀ · δ₂) ⊙ a'(z₁) ∂L/∂W₁ = δ₁ · xᵀ ∂L/∂b₁ = δ₁
The gradients: (∂L/∂W₁, ∂L/∂b₁, ∂L/∂W₂, ∂L/∂b₂, ∂L/∂W₃, ∂L/∂b₃, ∂L/∂W₄, ∂L/∂b₄) are used to 
update the weights and biases optimization algorithm, such as gradient descent. 
α is learning rate.

W₁ := W₁ - α · ∂L/∂W₁

b₁ := b₁ - α · ∂L/∂b₁

W₂ := W₂ - α · ∂L/∂W₂

b₂ := b₂ - α · ∂L/∂b₂

W₃ := W₃ - α · ∂L/∂W₃

b₃ := b₃ - α · ∂L/∂b₃

W₄ := W₄ - α · ∂L/∂W₄

b₄ := b₄ - α · ∂L/∂b₄



BACKWARD PROPAGATION - IN CASE YOU’RE CURIOUS

L = L(y(z₄(W₄, h₃, b₄)))
• L is the loss function
• y = a(z₄) is the output of the network, which is the activation function a 

applied to the weighted sum z₄
• z₄ = W₄ · h₃ + b₄ 

Find the gradients ∂L/∂W₄ and ∂L/∂b₄ using the chain 
rule.
For the weights W₄:
∂L/∂W₄ 
= ∂L/∂y · ∂y/∂z₄ · ∂z₄/∂W₄ 
= (∂L/∂y ⊙ a'(z₄)) · (h₃ᵀ) (Using the chain rule) 
= δ₄ · h₃ᵀ

For the biases b₄:
∂L/∂b₄ 
= ∂L/∂y · ∂y/∂z₄ · ∂z₄/∂b₄ 
= (∂L/∂y ⊙ a'(z₄)) · (1) (Since ∂z₄/∂b₄ = 1) 
= δ₄

δ₄ = ∂L/∂y ⊙ a'(z₄)
∂L/∂W₄ = δ₄ · h₃ᵀ
∂L/∂b₄ = δ₄



BACKWARD PROPAGATION - IN CASE YOU’RE CURIOUS MORE

The hidden layers have dimensions n₁, n₂, and n₃, the number of 
parameters is:
• W₁: 5 × n₁ parameters
• b₁: n₁ parameters
• W₂: n₁ × n₂ parameters
• b₂: n₂ parameters
• W₃: n₂ × n₃ parameters
• b₃: n₃ parameters
• W₄: n₃ × 3 parameters
• b₄: 3 parameters

Our example n=7
Parameters: 35 + 7 + 49 + 7 + 49 + 7 + 21 + 3 = 178



GRADIENT DESCENT
• Batch Gradient Descent: Calculates the gradient using the entire training 

dataset at each iteration. This can be computationally expensive for large 
datasets.

• Stochastic Gradient Descent (SGD): Calculates the gradient using a single, 
randomly selected data point at each iteration. This is much faster than 
batch gradient descent but can lead to noisy updates.

• Mini-Batch Gradient Descent: Calculates the gradient using a small, 
randomly selected subset (mini-batch) of the training data at each 
iteration. This provides a balance between the stability of batch gradient 
descent and the speed of stochastic gradient descent.

1 iteration - the forward propagation, loss calculation, backward propagation, 
and weight update steps have been performed once
Epoch - one complete pass through the entire training dataset.
Batch size can vary



MULTI-LAYER PERCEPTRON (STANDARD FORWARD NEURAL NETWORK)



DEEP LEARNING 



DEEP LEARNING - CNN
• Input Layer
• Convolutional Layers: The input image passes through one or more 

convolutional layers, where filters (kernels) are convolved with the input to 
extract features. The convolutional layers capture local patterns and spatial 
information in the image.

• Activation Functions: After each convolutional layer, an activation function 
like ReLU is applied element-wise to introduce non-linearity.

• Pooling Layers: Pooling layers (e.g., max pooling or average pooling) are often 
used to downsample the feature maps, reducing the spatial dimensions and 
providing translation invariance.

• Output Layer: The final output layer produces a segmentation mask, where 
each pixel is assigned a class label. The number of output channels in this 
layer corresponds to the number of classes (in this case, two: dog and 
background).



WHAT’S CONVOLUTION 
(f * g)(x, y) = Σ(i, j) f(i, j) g(x-i, y-j)
where (x, y) are the spatial coordinates of the output, and the summation 
is taken over all valid spatial positions (i, j) for which the kernel g is fully 
contained within the input f.

Two vectors a = [1, 2, 3, 4] and b = [5, 6, 7, 8]
The convolution of a and b, denoted as c = a * b
c[0] = a[0] * b[0] = 1 * 8 = 8 
c[1] = a[0] * b[1] + a[1] * b[0] = 1 * 7 + 2 * 8 = 23 
c[2] = a[0] * b[2] + a[1] * b[1] + a[2] * b[0] = 1 * 6 + 2 * 7 + 3 * 8 = 46 
c[3] = a[0] * b[3] + a[1] * b[2] + a[2] * b[1] + a[3] * b[0] = 1 * 5 + 2 * 6 + 3 * 7 + 4 * 8 = 77 
c[4] = a[1] * b[3] + a[2] * b[2] + a[3] * b[1] = 2 * 5 + 3 * 6 + 4 * 7 = 58 
c[5] = a[2] * b[3] + a[3] * b[2] = 3 * 5 + 4 * 6 = 39 
c[6] = a[3] * b[3] = 4 * 5 = 20

c = a * b = [8, 23, 46, 77, 58, 39, 20]

import numpy as np

a = np.array([1, 2, 3, 4])

b = np.array([5, 6, 7, 8])

convolution_result = np.convolve(a, b)



WHAT’S CONVOLUTION 
More than 2D matrix - say 3 by 3
convolution involves "sliding" one matrix over another, calculating the 
sum of element-wise products at each position.
Edge Handling: When convolving two matrices, handling the edges 
requires special attention.  

import numpy as np

from scipy.signal import convolve2d

a = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

b = np.array([[9, 8, 7],

 [6, 5, 4],

 [3, 2, 1]])

convolution = convolve2d(a, b, mode='full')

print(convolution)

[[  9  26  50  38  21]

 [ 42  94 154 106  54]

 [ 90 186 285 186  90]

 [ 54 106 154  94  42]

 [ 21  38  50  26   9]]



WHAT’S CONVOLUTION 
Now we have an 64 by 64 image, applying a blurring (average) filter
convolution involves "sliding" one matrix over another, calculating the 
sum of element-wise products at each position.

import matplotlib.pyplot as plt

import numpy as np

from scipy.signal import convolve2d

kernel = np.ones((3, 3)) / 9

image_circle = np.zeros((64, 64))

center = (30, 30)

radius = 20

for x in  range(image_circle.shape[0]):

 for y in  range(image_circle.shape[1 ]):

 if (x - center[0])**2 + (y - center[1])**2 < 

radius**2:

 image_circle[x, y] = 2

image_circle_normalized = image_circle

convolved_circle_image = convolve2d(

 image_circle_normalized, kernel, mode='same')



WHAT’S CONVOLUTION 
Colored Image: RBG 3 channels. The Convolution doesn't mix the channels; it applies the kernel separately 
to each channel. Convolution doesn't mix the channels; it applies the kernel separately to each channel. 



WHAT’S CONVOLUTION 
Now we have the 64 by 64 circle image, applying 5 filters (3 by 3 kernels)



WHAT IF I HAVE 1 MILLION HD IMAGES?
Convolution Theorem: under suitable conditions, the Fourier 
transform of the convolution of two signals is the point-wise product 
of their Fourier transforms. 
Efficiency: The FFT is a highly efficient algorithm for computing the 
Fourier transform, especially for data sizes that are powers of 2. Its 
O(nlogn)complexity makes the entire process much faster for large 
datasets compared to the direct convolution approach, which has 
O(n2)complexity for two signals of size n.

• Signal Processing: Filtering signals, analyzing frequency components
• Image Processing: Applying filters
• Deep Learning: in convolutional neural networks (CNNs), where 

convolution operations are fundamental, though implemented 
differently for training efficiency.



BACK TO CNN 8 Bit per pixel : 0-255



BACK TO CNN

Basic Feature 
Kernels

Max Pooling
Downsizing

Complex Feature 
Kernels

Max Pooling
Downsizing

Feature Extraction Classifier

Fully connected Neural Network Output



CNN
Deep Learning Frameworks:
Frameworks like PyTorch (Meta) and TensorFlow (Google) 
provide high-level APIs and libraries to define, train, and 
deploy deep learning models, including CNNs.
These frameworks offer a wide range of built-in layers, loss 
functions, optimizers, and other utilities that make it easier 
to build and train complex models

NVIDIA CUDA (Compute Unified Device Architecture) is a 
parallel computing platform and programming model.

• CUDA allows developers to leverage the power of NVIDIA 
GPUs for parallel processing.

• CUDA provides a set of libraries, tools, and compilers 
that enable efficient utilization of NVIDIA GPUs.



• Linear Regression

• Multi-layer Perceptron

• Convolutional Neural Network

• Transformer

• ...



TRANSFORMER
Megatron LM (nVidia)
DeepSpeed (Microsoft)
MaxText (Google)

Where is Apple?
Hmmm....
Metal and CoreML



Transformer is the T of GPT
Transformers, the "T" in GPT (Generative Pre-
trained Transformer), are a type of deep learning 
model architecture that has revolutionized 
natural language processing (NLP) tasks. 
The CORE of all the AI buzz!
Pile and Pile of Matrices

2017 “Attention is all you need” from Google
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., 
Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 
2017. Attention is all you need. Advances in neural 
information processing systems, 30.

Cited:115919



This sentence has 22 tokens, they are: ['I', 'Ġdon', "'t", 'Ġcare', 'Ġthat', 'Ġthey', 'Ġstole', 'Ġmy', 

'Ġidea', '.', 'ĠI', 'Ġcare', 'Ġthat', 'Ġthey', 'Ġdon', "'t", 'Ġhave', 'Ġany', 'Ġof', 'Ġtheir', 'Ġown', '.'], each 

token vector's embedded dimension is 768.

1 . from transformers import GPT2Model, GPT2Config, GPT2Tokenizer

2.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

3.config = GPT2Config.from_pretrained('gpt2')

4.sentence = "I don't care that they stole my idea. I care that they don't have any of their own."

5.tokens = tokenizer.tokenize(sentence)

6.token_ids = tokenizer.convert_tokens_to_ids(tokens)

7.embedding_size = config.hidden_size

8.print(f"This sentence has {len(tokens)} tokens, they are: {

9. tokens}, each token vector's embedded dimension is {embedding_size}.")

How does this work?
I don't care that they stole my idea.  I care that they don't have any of their own.

TOKEN

TOKENIZATION -BYTE PAIR ENCODING (BPE) 



Shape of 'I' embedding vector: torch.Size([768])

Some values of 'I’ embedding vector: tensor([-0.0796, -0.0654, -0.0842, -0.0337, -0.0758, -

0.2051, -0.4378, -0.1028, -0.1290,  0.0155])

Attention - Embedding Input
I don't care that they stole my idea.  I care that they don't have any of their own.

now Each token is a high dimension vector [768,1], GPT3 is [12288,1]. 

I printed first 10 for “I” for the vector e

High-Dimensional Feature Space

Contextual Information

-0.0796, 

-0.0654, 

-0.0842, 

-0.0337, 

-0.0758, 

-0.2051, 

-0.4378, 

-0.1028, 

-0.1290,  

0.0155,

...

...



Embedding Vector ei=E[tokeni]

Positional Encoding Vector pi

Combined Vector ei′​=ei+pi

Form Query, Key, and Value 

0.1796, 

-0.0654, 

0.4842, 

-0.0637, 

-2.0758, 

-1.2051, 

-

...

0.1 0.0 −0.20 

.20.2 0.1 0.0 

−0.1−0.1 0.2 0.1 

0.00.0 0.3 0.2 

0.1

... ...
WQ ei Q

Single “Head” of Attention
I don't care that they stole my idea.  I care that they don't have any of their own.



SINGLE HEAD ATTENTION MECHANISM
I don't care that they stole my idea.  I care that they don't have any of their own.



Multi-Head Attention
I don't care that they stole my idea.  I care that they don't have any of their own.

Each head may learn to focus on different types of relationships between tokens (e.g., syntactic vs. 
semantic relationships).
The outputs of all heads are concatenated and then linearly transformed into the final output of the 
multi-head attention layer.

ADD & NORM



I don't care that they stole my idea.  I care that they don't have any of their own.

Attention AttentionForward Neural 
Network

Forward Neural 
Network

Transformer Model Pipeline

Embedding layer
Positional Encoding



Extremely Parallelizable Architecture



Transformers Recent Development 
• BERT (Bidirectional Encoder Representations from 

Transformers): Pre-trained on large-scale unlabeled text 
data, a wide range of NLP tasks.

• GPT (Generative Pre-trained Transformer): GPT models have 
pushed the boundaries of language generation: text 
completion and dialogue generation.

• Vision Transformers (ViT): Computer vision: image 
classification and object detection.



Aspect RNNs (Recurrent Neural Networks ) Transformers

Architecture Sequential processing with hidden states Parallel processing with self-attention

Long-term 
Dependencies

Struggle with long-term dependencies due to 
vanishing gradients

Excel at capturing long-range dependencies through 
self-attention

Computational 
Efficiency

Sequential processing, can be computationally 
expensive for long sequences

Parallel processing, more efficient, especially for 
longer sequences

Positional 
Information

Inherently capture positional information through 
sequential processing

Require explicit positional encodings for parallel 
processing

Training
Challenging to train due to vanishing and 
exploding gradients

Easier to train and optimize, enabling deeper and 
larger models

Contextual 
Understanding

Capture contextual information within the 
sequence

Capture contextual information globally through 
self-attention

Scalability Limited scalability due to sequential processing
Highly scalable, allowing for training on large 
datasets and handling longer sequences



Semantic Medical Image Segmentation



Semantic Medical Image Segmentation



Generative CAD Design with FEA for 3D Printing Optimization
• In Fusion 360, input design goals, materials, manufacturing methods...
• Generative Adversarial Networks (GANs)
• Variational Autoencoders (VAEs)
• ...

Finite Element Analysis (FEA):
• Numerical simulation technique to analyze structural behavior under loading 

conditions.
• Divides design into smaller elements and solves equations to predict stress, strain, and 

deformation.
• Identifies areas of high stress concentration, potential failure points, and optimization 

opportunities.
• Fusion 360 includes built-in FEA tools for design simulation and analysis.



SensiScyther - embedded AI

AI-Driven Synthesis Workflow

Natural Language Processing

Parameter Mapping

On-Device AI Inference
• Picovoice (Porcupine + Rhino)

• Mozilla DeepSpeech

• CMSISNN







R A N  YA N G
2 0 2 4
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