
rxyan2@wm.edu

Ran Yang, Ph.D
Ran’s Lab Presents

CONTENTS

1. INTRODUCTION TO MACHINE LEARNING (ML)

2. LINEAR REGRESSION

3. FORWARD NEURAL NETWORK

4. CNN

5. TRANSFORMERS

6. AI RESEARCH PROJECTS IN RAN’S LAB

THREE MAIN TYPES OF
MACHINE LEARNING

• SUPERVISED LEARNING

• UNSUPERVISED LEARNING

• REINFORCEMENT LEARNING

SUPERVISED LEARNING

Cityscapes Dataset: Example Zurich
https://www.cityscapes-dataset.com/examples/

Learn a clustering model

UNSUPERVISED LEARNING

State - Action

REINFORCEMENT LEARNING
Reward

Dab

chill

Dog - Agent

Cookie

Penalty

Lay down Mean cat

LINEAR REGRESSION

X = [x₁, x₂, ..., xₙ],
y = [y₁, y₂, ..., yₙ],
A linear regression model with m features is
ŷᵢ = β₀ + β₁x₁ᵢ + β₂x₂ᵢ + ... + βₘxₘᵢ
Loss - Mean Squared Error :
MSE = (1/n) * Σ(ŷᵢ - yᵢ)², where i = 1 to n
Optimizer: Gradient Descent
βⱼ := βⱼ - α * ∂MSE/∂βⱼ, where j = 0 to m

OPTIMIZATION

Optimizer: Gradient Descent
βⱼ := βⱼ - α * ∂MSE/∂βⱼ, where j = 0 to m, α is the learning rate,
Partial Derivatives:
∂MSE/∂β₀ = (2/n) * Σ(ŷᵢ - yᵢ), where i = 1 to n ∂MSE/∂βⱼ = (2/n) * Σ(ŷᵢ - yᵢ) * xⱼᵢ,
where i = 1 to n and j = 1 to m
Update Equations:
β₀ := β₀ - α * (2/n) * Σ(ŷᵢ - yᵢ)
βⱼ := βⱼ - α * (2/n) * Σ(ŷᵢ - yᵢ) * xⱼᵢ, where j = 1 to m
Once the coefficients are learned, the trained linear regression model can
be used to make predictions on new, unseen data
(ŷ = β₀ + β₁x₁ + β₂x₂ + ... + βₘxₘ).

AN EXAMPLE

• HOUSE
• HORCE

MATRIX (IS AMAZING)
X = [x₁, x₂, ..., xₙ]ᵀ
y = [y₁, y₂, ..., yₙ]ᵀ
ŷ = Xβ
MSE = (1/n) * (y - ŷ)ᵀ(y - ŷ)
y is the vector of actual target values, of shape (n, 1).
ŷ is the vector of predicted values, of shape (n, 1).

Gradient Descent: β := β - α * ∇MSE
α is the learning rate, which determines the step size of the updates.
∇MSE is the gradient of the MSE with respect to the coefficients β.
∇MSE = (2/n) * Xᵀ(Xβ - y) feature matrix X of shape (m+1, n).
β := β - α * (2/n) * Xᵀ(Xβ - y)

NEURAL NETWORKS
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER

NEURAL NETWORKS
Input features: x₁, x₂, x₃, x₄, x₅
Hidden layers: h₁, h₂, h₃
Output values: y₁, y₂
Weights and biases:
• W₁: weight matrix connecting the input layer to the first hidden layer, of

shape (5, 7)
• b₁: bias vector for the first hidden layer, of shape (7, 1)
• W₂: (7, 7)
• b₂: (7, 1)
• W₃: (7, 7)
• b₃: (7, 1)
• W₄: (7, 3)
• b₄: (3, 1)

FORWARD PROPAGATION
Input layer to the first hidden layer: z₁ = W₁ · x + b₁ h₁ = a(z₁)
First hidden layer to the second hidden layer: z₂ = W₂ · h₁ + b₂ h₂ = a(z₂)
Second hidden layer to the third hidden layer: z₃ = W₃ · h₂ + b₃ h₃ = a(z₃)
Third hidden layer to the output layer: z₄ = W₄ · h₃ + b₄ y = a(z₄)

Activation function: a
A differentiable nonlinear activation function is used in the hidden layers of a neural network. This allows the
model to learn more complex functions than a network trained using a linear activation function.
• Sigmoid: f(z) = 1 / (1 + exp(-z)), f'(z) = f(z) * (1 - f(z))
• Hyperbolic Tangent (tanh): f(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)), f'(z) = 1 - f(z)^2
• Rectified Linear Unit (ReLU): f(z) = max(0, z), f'(z) = 1 if z > 0 else 0
• Leaky ReLU: f(z) = max(αz, z), where α is a small positive constant, f'(z) = 1 if z > 0 else α
• Softmax (for output layer in multi-class classification): f(z)ᵢ = exp(zᵢ) / ∑ⱼ exp(zⱼ), f'(z)ᵢ = f(z)ᵢ * (1 - f(z)ᵢ)

LOSS
y_true: the true output values, of shape (3, 1)

L: the loss function, which measures the difference between
the predicted output (y) and the true output (y_true)

Loss Functions:
Mean Squared Error (MSE) for regression problems: L = (1/2) · Σ(y - y_true)²
Binary Cross-Entropy for binary classification problems:
L = -[y_true · log(y) + (1 - y_true) · log(1 - y)]
Categorical Cross-Entropy for multi-class classification problems: L = -Σ(y_true · log(y))

BACKWARD PROPAGATION
Output layer: δ₄ = ∂L/∂y ⊙ a'(z₄) ∂L/∂W₄ = δ₄ · h₃ᵀ ∂L/∂b₄ = δ₄
h3: δ₃ = (W₄ᵀ · δ₄) ⊙ a'(z₃) ∂L/∂W₃ = δ₃ · h₂ᵀ ∂L/∂b₃ = δ₃
h2: δ₂ = (W₃ᵀ · δ₃) ⊙ a'(z₂) ∂L/∂W₂ = δ₂ · h₁ᵀ ∂L/∂b₂ = δ₂
h1: δ₁ = (W₂ᵀ · δ₂) ⊙ a'(z₁) ∂L/∂W₁ = δ₁ · xᵀ ∂L/∂b₁ = δ₁
The gradients: (∂L/∂W₁, ∂L/∂b₁, ∂L/∂W₂, ∂L/∂b₂, ∂L/∂W₃, ∂L/∂b₃, ∂L/∂W₄, ∂L/∂b₄) are used to
update the weights and biases optimization algorithm, such as gradient descent.
α is learning rate.

W₁ := W₁ - α · ∂L/∂W₁

b₁ := b₁ - α · ∂L/∂b₁

W₂ := W₂ - α · ∂L/∂W₂

b₂ := b₂ - α · ∂L/∂b₂

W₃ := W₃ - α · ∂L/∂W₃

b₃ := b₃ - α · ∂L/∂b₃

W₄ := W₄ - α · ∂L/∂W₄

b₄ := b₄ - α · ∂L/∂b₄

BACKWARD PROPAGATION - IN CASE YOU’RE CURIOUS

L = L(y(z₄(W₄, h₃, b₄)))
• L is the loss function
• y = a(z₄) is the output of the network, which is the activation function a

applied to the weighted sum z₄
• z₄ = W₄ · h₃ + b₄

Find the gradients ∂L/∂W₄ and ∂L/∂b₄ using the chain
rule.
For the weights W₄:
∂L/∂W₄
= ∂L/∂y · ∂y/∂z₄ · ∂z₄/∂W₄
= (∂L/∂y ⊙ a'(z₄)) · (h₃ᵀ) (Using the chain rule)
= δ₄ · h₃ᵀ

For the biases b₄:
∂L/∂b₄
= ∂L/∂y · ∂y/∂z₄ · ∂z₄/∂b₄
= (∂L/∂y ⊙ a'(z₄)) · (1) (Since ∂z₄/∂b₄ = 1)
= δ₄

δ₄ = ∂L/∂y ⊙ a'(z₄)
∂L/∂W₄ = δ₄ · h₃ᵀ
∂L/∂b₄ = δ₄

BACKWARD PROPAGATION - IN CASE YOU’RE CURIOUS MORE

The hidden layers have dimensions n₁, n₂, and n₃, the number of
parameters is:
• W₁: 5 × n₁ parameters
• b₁: n₁ parameters
• W₂: n₁ × n₂ parameters
• b₂: n₂ parameters
• W₃: n₂ × n₃ parameters
• b₃: n₃ parameters
• W₄: n₃ × 3 parameters
• b₄: 3 parameters

Our example n=7
Parameters: 35 + 7 + 49 + 7 + 49 + 7 + 21 + 3 = 178

GRADIENT DESCENT
• Batch Gradient Descent: Calculates the gradient using the entire training

dataset at each iteration. This can be computationally expensive for large
datasets.

• Stochastic Gradient Descent (SGD): Calculates the gradient using a single,
randomly selected data point at each iteration. This is much faster than
batch gradient descent but can lead to noisy updates.

• Mini-Batch Gradient Descent: Calculates the gradient using a small,
randomly selected subset (mini-batch) of the training data at each
iteration. This provides a balance between the stability of batch gradient
descent and the speed of stochastic gradient descent.

1 iteration - the forward propagation, loss calculation, backward propagation,
and weight update steps have been performed once
Epoch - one complete pass through the entire training dataset.
Batch size can vary

MULTI-LAYER PERCEPTRON (STANDARD FORWARD NEURAL NETWORK)

DEEP LEARNING

DEEP LEARNING - CNN
• Input Layer
• Convolutional Layers: The input image passes through one or more

convolutional layers, where filters (kernels) are convolved with the input to
extract features. The convolutional layers capture local patterns and spatial
information in the image.

• Activation Functions: After each convolutional layer, an activation function
like ReLU is applied element-wise to introduce non-linearity.

• Pooling Layers: Pooling layers (e.g., max pooling or average pooling) are often
used to downsample the feature maps, reducing the spatial dimensions and
providing translation invariance.

• Output Layer: The final output layer produces a segmentation mask, where
each pixel is assigned a class label. The number of output channels in this
layer corresponds to the number of classes (in this case, two: dog and
background).

WHAT’S CONVOLUTION
(f * g)(x, y) = Σ(i, j) f(i, j) g(x-i, y-j)
where (x, y) are the spatial coordinates of the output, and the summation
is taken over all valid spatial positions (i, j) for which the kernel g is fully
contained within the input f.

Two vectors a = [1, 2, 3, 4] and b = [5, 6, 7, 8]
The convolution of a and b, denoted as c = a * b
c[0] = a[0] * b[0] = 1 * 8 = 8
c[1] = a[0] * b[1] + a[1] * b[0] = 1 * 7 + 2 * 8 = 23
c[2] = a[0] * b[2] + a[1] * b[1] + a[2] * b[0] = 1 * 6 + 2 * 7 + 3 * 8 = 46
c[3] = a[0] * b[3] + a[1] * b[2] + a[2] * b[1] + a[3] * b[0] = 1 * 5 + 2 * 6 + 3 * 7 + 4 * 8 = 77
c[4] = a[1] * b[3] + a[2] * b[2] + a[3] * b[1] = 2 * 5 + 3 * 6 + 4 * 7 = 58
c[5] = a[2] * b[3] + a[3] * b[2] = 3 * 5 + 4 * 6 = 39
c[6] = a[3] * b[3] = 4 * 5 = 20

c = a * b = [8, 23, 46, 77, 58, 39, 20]

import numpy as np

a = np.array([1, 2, 3, 4])

b = np.array([5, 6, 7, 8])

convolution_result = np.convolve(a, b)

WHAT’S CONVOLUTION
More than 2D matrix - say 3 by 3
convolution involves "sliding" one matrix over another, calculating the
sum of element-wise products at each position.
Edge Handling: When convolving two matrices, handling the edges
requires special attention.

import numpy as np

from scipy.signal import convolve2d

a = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

b = np.array([[9, 8, 7],

 [6, 5, 4],

 [3, 2, 1]])

convolution = convolve2d(a, b, mode='full')

print(convolution)

[[9 26 50 38 21]

 [42 94 154 106 54]

 [90 186 285 186 90]

 [54 106 154 94 42]

 [21 38 50 26 9]]

WHAT’S CONVOLUTION
Now we have an 64 by 64 image, applying a blurring (average) filter
convolution involves "sliding" one matrix over another, calculating the
sum of element-wise products at each position.

import matplotlib.pyplot as plt

import numpy as np

from scipy.signal import convolve2d

kernel = np.ones((3, 3)) / 9

image_circle = np.zeros((64, 64))

center = (30, 30)

radius = 20

for x in range(image_circle.shape[0]):

 for y in range(image_circle.shape[1]):

 if (x - center[0])**2 + (y - center[1])**2 <

radius**2:

 image_circle[x, y] = 2

image_circle_normalized = image_circle

convolved_circle_image = convolve2d(

 image_circle_normalized, kernel, mode='same')

WHAT’S CONVOLUTION
Colored Image: RBG 3 channels. The Convolution doesn't mix the channels; it applies the kernel separately
to each channel. Convolution doesn't mix the channels; it applies the kernel separately to each channel.

WHAT’S CONVOLUTION
Now we have the 64 by 64 circle image, applying 5 filters (3 by 3 kernels)

WHAT IF I HAVE 1 MILLION HD IMAGES?
Convolution Theorem: under suitable conditions, the Fourier
transform of the convolution of two signals is the point-wise product
of their Fourier transforms.
Efficiency: The FFT is a highly efficient algorithm for computing the
Fourier transform, especially for data sizes that are powers of 2. Its
O(nlogn)complexity makes the entire process much faster for large
datasets compared to the direct convolution approach, which has
O(n2)complexity for two signals of size n.

• Signal Processing: Filtering signals, analyzing frequency components
• Image Processing: Applying filters
• Deep Learning: in convolutional neural networks (CNNs), where

convolution operations are fundamental, though implemented
differently for training efficiency.

BACK TO CNN 8 Bit per pixel : 0-255

BACK TO CNN

Basic Feature
Kernels

Max Pooling
Downsizing

Complex Feature
Kernels

Max Pooling
Downsizing

Feature Extraction Classifier

Fully connected Neural Network Output

CNN
Deep Learning Frameworks:
Frameworks like PyTorch (Meta) and TensorFlow (Google)
provide high-level APIs and libraries to define, train, and
deploy deep learning models, including CNNs.
These frameworks offer a wide range of built-in layers, loss
functions, optimizers, and other utilities that make it easier
to build and train complex models

NVIDIA CUDA (Compute Unified Device Architecture) is a
parallel computing platform and programming model.

• CUDA allows developers to leverage the power of NVIDIA
GPUs for parallel processing.

• CUDA provides a set of libraries, tools, and compilers
that enable efficient utilization of NVIDIA GPUs.

• Linear Regression

• Multi-layer Perceptron

• Convolutional Neural Network

• Transformer

• ...

TRANSFORMER
Megatron LM (nVidia)
DeepSpeed (Microsoft)
MaxText (Google)

Where is Apple?
Hmmm....
Metal and CoreML

Transformer is the T of GPT
Transformers, the "T" in GPT (Generative Pre-
trained Transformer), are a type of deep learning
model architecture that has revolutionized
natural language processing (NLP) tasks.
The CORE of all the AI buzz!
Pile and Pile of Matrices

2017 “Attention is all you need” from Google
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I.,
2017. Attention is all you need. Advances in neural
information processing systems, 30.

Cited:115919

This sentence has 22 tokens, they are: ['I', 'Ġdon', "'t", 'Ġcare', 'Ġthat', 'Ġthey', 'Ġstole', 'Ġmy',

'Ġidea', '.', 'ĠI', 'Ġcare', 'Ġthat', 'Ġthey', 'Ġdon', "'t", 'Ġhave', 'Ġany', 'Ġof', 'Ġtheir', 'Ġown', '.'], each

token vector's embedded dimension is 768.

1 . from transformers import GPT2Model, GPT2Config, GPT2Tokenizer

2.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

3.config = GPT2Config.from_pretrained('gpt2')

4.sentence = "I don't care that they stole my idea. I care that they don't have any of their own."

5.tokens = tokenizer.tokenize(sentence)

6.token_ids = tokenizer.convert_tokens_to_ids(tokens)

7.embedding_size = config.hidden_size

8.print(f"This sentence has {len(tokens)} tokens, they are: {

9. tokens}, each token vector's embedded dimension is {embedding_size}.")

How does this work?
I don't care that they stole my idea. I care that they don't have any of their own.

TOKEN

TOKENIZATION -BYTE PAIR ENCODING (BPE)

Shape of 'I' embedding vector: torch.Size([768])

Some values of 'I’ embedding vector: tensor([-0.0796, -0.0654, -0.0842, -0.0337, -0.0758, -

0.2051, -0.4378, -0.1028, -0.1290, 0.0155])

Attention - Embedding Input
I don't care that they stole my idea. I care that they don't have any of their own.

now Each token is a high dimension vector [768,1], GPT3 is [12288,1].

I printed first 10 for “I” for the vector e

High-Dimensional Feature Space

Contextual Information

-0.0796,

-0.0654,

-0.0842,

-0.0337,

-0.0758,

-0.2051,

-0.4378,

-0.1028,

-0.1290,

0.0155,

...

...

Embedding Vector ei=E[tokeni]

Positional Encoding Vector pi

Combined Vector ei′​=ei+pi

Form Query, Key, and Value

0.1796,

-0.0654,

0.4842,

-0.0637,

-2.0758,

-1.2051,

-

...

0.1 0.0 −0.20

.20.2 0.1 0.0

−0.1−0.1 0.2 0.1

0.00.0 0.3 0.2

0.1

... ...
WQ ei Q

Single “Head” of Attention
I don't care that they stole my idea. I care that they don't have any of their own.

SINGLE HEAD ATTENTION MECHANISM
I don't care that they stole my idea. I care that they don't have any of their own.

Multi-Head Attention
I don't care that they stole my idea. I care that they don't have any of their own.

Each head may learn to focus on different types of relationships between tokens (e.g., syntactic vs.
semantic relationships).
The outputs of all heads are concatenated and then linearly transformed into the final output of the
multi-head attention layer.

ADD & NORM

I don't care that they stole my idea. I care that they don't have any of their own.

Attention AttentionForward Neural
Network

Forward Neural
Network

Transformer Model Pipeline

Embedding layer
Positional Encoding

Extremely Parallelizable Architecture

Transformers Recent Development
• BERT (Bidirectional Encoder Representations from

Transformers): Pre-trained on large-scale unlabeled text
data, a wide range of NLP tasks.

• GPT (Generative Pre-trained Transformer): GPT models have
pushed the boundaries of language generation: text
completion and dialogue generation.

• Vision Transformers (ViT): Computer vision: image
classification and object detection.

Aspect RNNs (Recurrent Neural Networks) Transformers

Architecture Sequential processing with hidden states Parallel processing with self-attention

Long-term
Dependencies

Struggle with long-term dependencies due to
vanishing gradients

Excel at capturing long-range dependencies through
self-attention

Computational
Efficiency

Sequential processing, can be computationally
expensive for long sequences

Parallel processing, more efficient, especially for
longer sequences

Positional
Information

Inherently capture positional information through
sequential processing

Require explicit positional encodings for parallel
processing

Training
Challenging to train due to vanishing and
exploding gradients

Easier to train and optimize, enabling deeper and
larger models

Contextual
Understanding

Capture contextual information within the
sequence

Capture contextual information globally through
self-attention

Scalability Limited scalability due to sequential processing
Highly scalable, allowing for training on large
datasets and handling longer sequences

Semantic Medical Image Segmentation

Semantic Medical Image Segmentation

Generative CAD Design with FEA for 3D Printing Optimization
• In Fusion 360, input design goals, materials, manufacturing methods...
• Generative Adversarial Networks (GANs)
• Variational Autoencoders (VAEs)
• ...

Finite Element Analysis (FEA):
• Numerical simulation technique to analyze structural behavior under loading

conditions.
• Divides design into smaller elements and solves equations to predict stress, strain, and

deformation.
• Identifies areas of high stress concentration, potential failure points, and optimization

opportunities.
• Fusion 360 includes built-in FEA tools for design simulation and analysis.

SensiScyther - embedded AI

AI-Driven Synthesis Workflow

Natural Language Processing

Parameter Mapping

On-Device AI Inference
• Picovoice (Porcupine + Rhino)

• Mozilla DeepSpeech

• CMSISNN

R A N YA N G
2 0 2 4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

